Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue
نویسندگان
چکیده
Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 μm and these are excellently matched with the OGSE estimates 4.2-6.5 μm, while SDE overestimates at 5.2-8 μm for the same sample. We found OGSE estimates to be more precise with on average a 0.5 μm standard deviation compared to the SDE estimates which have a 2 μm standard deviation. When testing the robustness of the estimates when the number of the diffusion gradient directions reduces, we found that both OGSE and SDE estimates are affected, however OGSE is more robust to these changes than the SDE. Overall, these results suggest, quantitatively and in in vivo conditions, that low-frequency OGSE sequences may provide improved accuracy of axon diameter mapping compared to standard SDE sequences.
منابع مشابه
Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy
Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon...
متن کاملOptimal diffusion-gradient waveforms for measuring axon diameter
Introduction: Measuring microstructure parameters of brain tissue, such as axon radius, in vivo is a challenge in diffusion MRI. Current approaches typically use pulsed-gradient spin-echo (PGSE) [1] or stimulated-echo (STEAM) [2] sequences, both of which use a rectangular diffusion-gradient pulse. However other shapes of diffusion-gradient pulses such as oscillating [3] or chirped [4] may provi...
متن کاملPGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study
PURPOSE To identify optimal pulsed gradient spin-echo (PGSE) and oscillating gradient spin-echo (OGSE) sequence settings for maximizing sensitivity to axon diameter in idealized and practical conditions. METHODS Simulations on a simple two-compartment white matter model (with nonpermeable cylinders) are used to investigate a wide space of clinically plausible PGSE and OGSE sequence parameters...
متن کاملFast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy.
Mapping axon sizes non-invasively is of interest for neuroscientists and may have significant clinical potential because nerve conduction velocity is directly dependent on axon size. Current approaches to measuring axon sizes using diffusion-weighted MRI, e.g. q-space imaging with pulsed gradient spin echo (PGSE) sequences usually require long scan times and high q-values to detect small axons ...
متن کاملAxon radius estimation with Oscillating Gradient Spin Echo (OGSE) Diffusion MRI
The estimation of axon radius provides insights into brain function [1] and could provide progression and classification biomarkers for a number of white matter diseases [2-4]. A recent in silico study [5] has shown that optimised gradient waveforms (GEN) and oscillating gradient waveform spin echo (OGSE) have increased sensitivity to small axon radius compared to pulsed gradient spin echo (PGS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره شماره
صفحات -
تاریخ انتشار 2017